This week I discuss types of supernovae, specifically relating to the scenario where “Hydrogen lines are prominent in Type II supernovae but absent in Type Ia. Type Ia supernovae decline gradually for more than a year, whereas Type II supernovae alternate between periods of steep and gradual declines in brightness. Type II light curves therefore have a step-like appearance. Explain!”
The question I really wanted to ask is ‘What happened to Type I or Ib?’ and the answer to that question was easily found in this chart:
I volunteer behind the circulation desk of my local library a few hours a week. I look forward to my weekly chance to greet and assist our patrons. Every minute is an opportunity for a new adventure or discovery. As with most journeys, I experience and savor the high points and persevere through the more challenging bumps.
I empathized with a patron who returned a canine mauled book with a trade paperback edition replacement in hand. Unfortunately, according to our circulation policies specific to lost of damaged items, we can’t accept replacements purchased by patrons, but must charge for the replacement cost, plus a small handling fee. Why not take the replacement from the patron? In the case of print books, it’s usually because the bindings available from retail outlets won’t hold up as well as print editions bound for library circulation.
Just in time for Halloween, my topic this week focuses on electron degeneracy pressure specifically to delve into how “A degenerate gas does not expand when the temperature increases as an ordinary gas does.”
In 1923, Arthur Stanley Eddington derived a formula to relate the luminosity of a star to its mass, and in the same year correctly interpreted high-density, white dwarf stars as being formed of matter so dense that atomic electrons have collapsed from their orbits, a substance we now call degenerate matter. (Levy, p. 116)
Young giant stars of a certain size, between .4 and 2 solar masses, have helium rich cores squeezed by gravitational force into a crystal-like solid. At these pressures, the atoms become completely ionized, separately into nuclei and electrons and are so closely crowded together that become influenced by the Pauli exclusion principle phenomenon. Two identical particles are not allowed to exist in the same place and time. As the electrons are pressed closer and closer together, the exclusion principle forces many of them to move faster and faster so they do not become ‘identical’ (meaning occupying the same space and moving with the same speed of adjacent electrons) and consequently this motion increases the repulsion between the electrons. This state provides pressure in the core preventing it from collapsing and is referred to by astronomers as degeneracy. Thus, low-mass giants with helium-rich cores are supported by electron degeneracy pressure. (Comins, p. 335)
At the end of September I reached that point in the year when I could shake off all my various book club obligatory reading and get down to the serious business of reading the books I bought for myself all year long. Not every year gives me a break where I can read what I want. I often have to squeeze in my ‘must read’ books between the two to three other books I read per month for various discussion groups and book clubs. Don’t get me wrong. I very much enjoy reading outside my comfort zone and would not give up the wonderful discussions and cherished friendships I’ve nurtured through a shared love of reading.
Most years, I read between 75 and 100 books; last year I read 88 and as of today I’ve read 99 thus far in 2017. And only about ten percent make it onto my ‘loved-it’ shelf (the equivalent of a five-star rating). This year had a few more than normal and will probably end with two to three more on the shelf before year’s end (because I’m now reading what I’ve had on hold for most of the year).
And by friends, I’m referring to the Friends of the Lansing Community Library (FotLCL for short), a nonprofit organization that is member supported and advocates, fundraises and provides critical support for my local library, the Lansing Community Library (LCL for short). Their mission, which you can choose to accept as well, is to support LCL in providing free and equal access to information for all citizens through donations of time, talent and resources.
This week I want to discuss “What might cause the closer of two identical stars to appear dimmer than the farther one?”
Apparent Magnitude: A measurement of the brightness of stars without regard to their distance from Earth.
The scale in use today starts with the star Vega and an apparent magnitude of 0.0
Objects brighter than Vega are assigned negative numbers. For example. Sirius, the night’s brightest star, has an apparent magnitude of -1.44
The scale was extended to include the dimmest stars visible through binoculars and telescopes. For example, a pair of binoculars can see stars with an apparent magnitude of +10
Ignoring distance for a moment, all other things being equal, the closer of two identical stars will appear brighter (have a smaller apparent magnitude) to us than the more distant star. When we account for the difference in distance, we use either or two measurements: absolute magnitude and luminosity.
I’ve reached the halfway point through my Introduction to Astronomy class. This week marks the eighth week of fifteen, sixteen if you count the first week where we just spent time getting to know each other and exploring the textbook and getting the lab software, Starry Night, installed and licensed. Last week, we reached the outer limits in the Kuiper Belt and Oort Cloud of our solar system where only comets and Voyagers I and II have ventured. Now we’ve snapped back to study our closest star, Sol, or more commonly just the Sun. My topic for discussion responds to the following question:
Why is the solar cycle said to have a period of 22 years, even though the sunspot cycle is only 11 years long?
Some surface features on our active Sun vary periodically in an eleven year cycle. The Sun’s magnetic fields which cause the surface changes vary over a twenty-two year cycle. The relatively cool and slightly darker regions, commonly called sunspots, are produced by local concentrations of the Sun’s magnetic field piercing the photosphere. The latitude and number of sunspots on average vary during the same eleven year cycle. But the hemisphere where the Sun’s north magnetic pole anchors during one eleven year cycle will have south magnetic poles during the next. Because it takes a full twenty-two years for the magnetic poles to return to their original orientation astronomers refer to the entire solar cycle. The magnetic dynamo model posits that many transient features of the solar cycle are caused by the effect of differential rotation and convection on the Sun’s magnetic field. The Sun’s differential rotation (different speeds at different latitudes) causes its magnetic field to become increasingly stretched like a rubber band. The bands can’t break so they periodically untangle themselves with the help of trapped gases which leak out (sunspot) and gradually settle back under the photosphere, when the sunspot disappears. The most recent reversal of the Sun’s magnetic field occurred in 2013. We are currently at the tale end of Solar Cycle 24. (Comins, 2015, p. 272-83)
My topic for discussion this week will attempt to answer the question:
Why do astronomers believe that the debris that creates many isolated meteors comes from asteroids, whereas the debris that creates meteor showers is related to comets?
But first, I want to share two things that serendipitously fell from my Twitter feed (@mossjon) today. Today’s APOD (Astronomy Picture of the Day@apod) featured the unusual mountain on Ceres (Comins, 2015, p. 239).
The second thing that immediately caught my eye today was an episode of Astronomy Magazine‘s “The Real Reality Show” entitled “How an Asteroid Killed Off the Dinosaurs” covered late in Chapter 8 of our textbook (Comins, 2015, p. 263-4) and which also bonked me on the head via my Twitter feed:
In this week’s discussion topic, I attempt to answer the question “Why are Uranus and Neptune distinctly bluer than Jupiter and Saturn?”
On Uranus and Neptune, the methane absorbs red, orange and yellow light, reflecting back the blue. In contrast, Jupiter and Saturn have only minor trace amounts of methane and quite a bit more hydrogen and ammonia.
On the basis of lunar rocks brought back by the astronauts, explain why the maria are dark-colored, but the lunar highlands are light-colored?
Regions of both the near side and far side of the Moon not covered by mare basalt are called highlands. The highlands consist of the ancient lunar surface rock, anorthosite, and materials thrown out during the creation of the impact basins. (“Lunar Rocks | National Air and Space Museum,” n.d.)
The anorthosite rock highlands are brighter than the maria basalts. Pulverized by meteoric action, both the basalts of the maria and the anorthosite of the highlands are covered by a blanket of powdered rock, also known as regolith. Continue reading “Dark Seas and Bright Highlands”